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Many probabilistic methodologies have been proposed that address the reliability and risk factors unique to
composite structures, incorporating micromechanics, laminate theory, manufacturing defects, operating
environment, and impact damage, but few have addressed the importance of inspection intervals and damage-
detection capabilities. The present study is based on a probabilistic damage-tolerance analysis with consideration of
the following parameters: inspection intervals; statistical data on damages; loads; temperatures; damage-detection
capability; and residual strength of the new, damaged, and repaired structures. The inspection intervals are
formulated based on the damaged structure’s probability of failure and the quality of its repair. This approach
enables accidental, random damage events to be assessed quantitatively, allowing aircraft manufacturers, operators,
and flight certification authorities to better evaluate and predict the damage tolerance and safety of an aircraft
structure. Engineers can use this methodology to incorporate structural risk and maintenance costs into their design
and inspection criteria. Its validity is demonstrated on several existing structural components, and special attention
has been paid to the availability and cost of the probabilistic input data.

Nomenclature

b,B = exponential probability density function
parameter

Cy = coefficient of variation

Firax(x, 1) = cumulative probability distribution function
(cumulative distribution function) of maximum
load x per time ¢

G residual strength curve parameter

H(x) = frequency of an event exceeding the level x

Np = number of damages per life

Py(D) probability of detecting a damage/defect with a
size greater than D

Py, POF = probability of failure

S; = strength through ith interval

T = temperature, K

t; = time interval

o = shape parameter

B = scale parameter

D, = tabulated Gauss—Laplace function (normal
distribution)

Introduction

ISK analysis methods for determining aircraft reliability have

been under development for more than 30 yr and, because many
key engineering parameters are probabilistic in nature (material
property values, gust load, damage size, and so on), research has
focused on the development of probabilistic methods. Despite their
advantages over classical, deterministic safety factors in the design
process, design organizations have been reluctant to adopt even the
standard probabilistic methods or to include them as part of their risk
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analysis capability. Reasons cited include: the complexity of failure
modes; lack of available damage data; and safety issues.

Current, deterministic, approaches to aircraft design and flight
certification use safety and knockdown factors for various design
conditions (e.g., moisture, temperature, loading and damage).
Because of the higher scatter in statistical data for composite
materials and their sensitivity to impact damage, traditional methods
have led to very conservative design and service guidelines. Such
methods, essentially, assume that a worst case scenario occurs
simultaneously for each design condition. The result is a substantial
weight and cost penalty, reducing the performance advantages of
composites [1].

The need to quantify the reliability of aircraft structures subject to
accidental damage is an increasingly important issue as the use of
composite materials becomes more widespread. Foreign object
damage (FOD), ground vehicle collisions and lightening strikes are
but a few examples of accidental damage that an aircraft structure
must face during its operational lifetime. A probabilistic approach
enables these accidental, random damage events to be assessed
quantitatively, allowing aircraft manufacturers, operators, and flight
certification authorities to better evaluate and predict the damage
tolerance and safety of an aircraft structure.

The primary candidate for addressing this issue has been the
software package, NESSUS, developed by the Southwest Research
Institute (SwRI) [2—4]. However its advanced fast probability
integration (FPI) methods do not work with discrete variables, such
as the number of damage events or the number of inspections
necessary to detect damage. Other candidates are the “Level of
Safety” method proposed by Lin, et al. [5] and the “Probabilistic
Design of Composite Structures” (ProDeCompos) method proposed
by Styuart, et al. [6]. The approach presented here combines these
last two methods, and uses the NESSUS package to obtain the
probabilistic characteristics of initial and residual strength and to
validate the proposed method. Our method incorporates data from in-
service experience to optimize the benefits of using composites, but
its potential to increase structural safety and reduce maintenance cost
is not limited to composite structures.

Past studies of structural risk and reliability have focused on metal
fatigue in aging aircraft. Composite structures, however, are fatigue
and corrosion resistant, but because of their brittle behavior during
failure, composite structures are much more sensitive to impact
damage. Furthermore, there may be no visible evidence even when
significant internal damage has been sustained. Many probabilistic
methodologies have been proposed, incorporating micromechanics,
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laminate theory, manufacturing defects, operating environment, and
impact damage, but few have addressed the importance of inspection
intervals and damage-detection capabilities.

The present study is based on a probabilistic damage-tolerance
analysis (PDTA) with consideration of the following parameters:
inspection intervals; statistical data on damages; loads; temperatures;
damage-detection capability; and residual strength of the new,
damaged and repaired structures. The inspection intervals are
formulated based on the damaged structure’s probability of failure
and the quality of the structure’s repair.

Reliability Formulation

Modern damage-tolerance philosophies require that damage
accumulated during the service life of a component be detected and
repaired before the strength of the component is degraded beyond
some design threshold. The following simple example describes
some fundamental concepts of probabilistic structural analysis and
design.

The assessment of the probability of failure for deterministically
defined residual strength history is shown schematically in Fig. 1.

Let us assume that every structural component in an infinite fleet
has this residual strength (R) history. The initial R is 1.5. At the
instant 7, the damage of size D occurs and R is decreased to the value
1.1. At the time instant #; the damage is repaired and strength fully
restored. There are three intervals #; of constant strength S;. Failure
occurs when the random external load exceeds the residual strength.

The probability of failure per life is expressed as:

N=3

Pr=1—T]0=Ps(Si1)] (1)
i=1

where P((S;, t;) is a probability of failure per ith interval.
Let us assume the load exceedance curve looks like that in Fig. 2.
The cumulative distribution function (CDF) of maximum load per
time ti may be written as [7]:

Flmax(Siv ti) = eiHl(Sl)t' (2)

It is easy to find from Figs. 1 and 2 and Eq. (2) that P/(S,, #,)=
P;(S5,13) = 6.121075, P(S,,1,) =4.26107% and the summary
P; =4.261072. In plain English, the probability of encountering a
failure load while the structure is compromised by a damage event
(i.e. between the occurrence of damage and its discovery and repair)
is 1 in 4260.

Now, let us itemize some details of random damage events as they
occur in the real world:

1) There may be any number of damages per life.

2) There may be several different types of damage (e.g., through
crack, indentation, delamination, disbonding)

3) Damages occur at random times.

4) Damages have different sizes.

5) There may be several different types of inspection (preflight
visual inspection, maintenance inspection, and so on).

6) Damage life depends on the frequency of inspections and the
capability of inspection to detect damage.

Figure 3 shows a history of the size of random damage events over
time. Two types of damage are supposed: delamination and a hole.

We need to convert the damage size into a realization of residual
strength before we can calculate the probability of failure using
Eq. (1). To achieve this, we need to take into account a number of
deterministic and random variables discussed in the next two
sections.

Deterministic Variables or Categories

Before introducing the random variables and their functions, we
must first specify the following deterministic variables, or categories:
design load case/failure mode; damage type; inspection type/type of
repair. All are readily derived from existing data sets in common use,
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and minimal effort should be necessary for their identification,
collection, and adaptation to the methods discussed.

Deterministic Design Load Cases and Failure Modes

In accordance with current design practices, the strength and
rigidity of an aircraft structure is analyzed for a finite set of conditions
called design load cases (DLC). There may be any number of
possible load cases, but for each particular substructure the engineer
will select only the critical few related to the substructure’s potential
to fail under load conditions (bending moment, torque, shear force,
and so on) anticipated to occur in various segments of the flight
profile. Flap load cases, for example, would be separated into one
DLC for takeoff, and another for landing.

Deterministic Classification of Defects and Damages

As with design load cases, we need also to identify a finite set of
defect and damage types (hole, delamination, surface dents, and so
on) that can be classified and related to available methods for
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evaluating the residual strength. The classification the user chooses
will depend on the characteristics and level of detail of damage data
they have access to, how that data relates to calculations of residual
strength, and the design load cases associated with each component
that sustains damage. If a component experiences only tension stress,
for example, primary attention would be paid to through damage, as
delamination would be of minor importance.

Deterministic Description of Inspection and Repair

Inspection types are distinguished by their methods, time, and
frequency. Currently the time and frequency of inspection is a
deterministic variable defined by the inspection schedule. The
preflight type of inspection is always defined. If this inspection is not
specified in the maintenance documentation, we assume their
existence but at low resolution.

Random Variables

The following nine random variables need to be considered when
assessing the structural integrity of a defective or damaged
component:

1) Number of damages per life (N,) for each damage/defect type;

2) Time of damage initiation;

3) Damage/defect size D for each damage/defect type;

4) Time ¢; or number of inspections from damage initiation to
repair, which is a random function of damage size and inspection
schedule;

5) Initial failure load (initial strength) for each design load case;

6) Average residual strength for each damage/defect size/type
within each design load case;

7) Failure load of repaired structure for each damage/defect type;

8) Structural load for each design load case;

9) Structural temperatures T';

10) Strength/stiffness degradation due to environmental exposure.

Most of the above-mentioned variables are described either by a
probability density function (PDF) or an exceedance curve, with the
exception of two variables having fixed PDFs: the damage event is
assumed to be arare event and therefore the number of damages (Np)
is described by Poisson distribution; and the number of inspections to
detect damage is described by geometric PDF.

Probabilistic Description of Loads

As already mentioned, we describe the external loads in terms of
exceedance curves and then use Eq. (2) to obtain the CDF of
maximum load per certain time. In the modern practice of fatigue
analysis, the life of fatigue-critical components of a structure is
predicted by taking the number of cycles (time) it takes for cracks to
appear in laboratory fatigue tests, and correlating it with cumulative
damage in operation. This cumulative damage is predicted
statistically using a load exceedance curve. It is not easy to obtain
adequate statistical information (flight measurements) on the loads
(stresses) for all structural sites of interest. So, cumulative damage is
predicted using a probabilistic description of governing flight
parameters (e.g., maneuver load factors) or a probabilistic
description of atmosphere (gust), sinking speeds at landing, and so
on.

These parameters are well studied and their frequency of
occurrence can be easily predicted if the typical flight profiles are
known. However the local structural stresses are determined by a
combination of flight parameters (design load factor and speed, for
example). This problem is usually solved as follows:

All flight profiles of aircraft are divided up into individual flight
segments where the load distributions are approximately constant,
and so the load variation for each flight segment can be described by
one governing parameter. Usually the static design load cases are
attributed, in a conservative manner, to these flight segments, so that
the load distribution for a pull-up maneuver, for example, would be
used together with the maneuver’s load factor as its governing
parameter, and its frequency of occurrence as determined by its load
exceedance curve. Rough air loads are described by gust velocity as

the governing parameter, along with the load’s exceedance curve and
the flight segment’s corresponding load distribution (cruise, flaps-
down configuration, and so on). Landing loads are described by
sinking speed as the governing parameter together with the
appropriate two-point landing load distribution.

The linear relationships between the governing load parameter and
the stress in a considered location is determined from stress analysis
for the corresponding design load case. Applying some relevant
strength criterion, the occurrence of site loads can be obtained.

In addition to load exceedance curves, the proposed method and
software optionally use some popular PDFs such as Gumbel extreme
value type I, lognormal, and so on.

Probabilistic Description of Structural Temperature

Temperatures and load are certainly correlated variables and in
general should be described by a bidimensional PDF. However the
statistical data on structural temperature are available only for
supersonic aircraft, reentry vehicles, and similar. We are therefore
going to use a simplified model where this correlation is hidden in
different flight segments, or design load cases. Temperatures are
closely related to the external loads and the way they are described
may be similar. The CDF should be obtained for each flight segment
or design load case. Within one design load case we will consider
mechanical load and temperature to be independent random
variables. All that is missing is the cumulative probability
distribution (CDF) of the duration of the various temperatures, which
may be derived from the aircraft’s predicted design usage.

As arough approximation the model described in [8] can also be
used to obtain initial CDF. According to [8], this function consists of
two branches: the first is common for all aircraft and characterizes the
frequency of low temperatures, and the second depends on the
maximum Mach number M, of a given aircraft. The function can
be approximated by the formula:

F(T) =05+ @, [T — T°]

T

where Ty =310K; 0, =25K at T <T, Ty =0K; o7 =61 +
1M, atT>T,.
Here:

_310(61 + 11M2,,)
P36 4+ 11IM2,

®, is a tabulated Gauss—Laplace function, and T is a boundary-layer
temperature in degrees Kelvin.

Probabilistic Description of Defects/Damages

Our description of defects and damages is similar to that for loads.
Available statistical data, as well as relevant mathematical models
derived from it, can be used for a probabilistic description of defects/
damages. Defects and damages are described by their frequency of
occurrence Hj, (similar to the load exceedance curve) for each of
various damage sizes D, and then derived for each type of damage or
by the damage size PDF plus the Poisson distribution parameter A,
which represents the average number of damages per life.

We use two classes of mechanical damages: manufacturing
defects; and operational damages. The damage types within these
classes are the same. Defects and damages are described by similar
exceedance curves but these curves are used in different ways.
Manufacturing defect is generated randomly together with initial
strength in time instant ¢ = 0. Operational damages are randomly
scattered over the life using a uniform PDF.

The relationship between the exceedance curve Hp(D) for a
damage/defect size and the corresponding CDF is defined as follows:

_ Hp(D)
Hp(0)

Fp(D) =1
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Fig. 4 Probability of damage detection per inspection.

Probabilistic Description of Inspections

The efficiency of inspection should be described by the probability
of detecting the damage of a given type and size. This probability is
shown in Fig. 4.

Only a few attempts to identify this function are known from the
literature. Ideally special tests would be needed to obtain this
probability. Having representative experts inspect, by the
appropriate methods, different zones of a structure having damages
of different size and type could achieve this. The probability of
detection is determined as the ratio of a number of successful
inspections to their total number. It is also possible to determine the
detection probability by comparing the empirical probability
function of detected damages with the theoretical one, and assuming
that their difference is the probability for detection for various sizes
of damage.

The random time to detect damage can be expressed as ty,,, = T*&,
where £ is a discrete random variable having a geometric distribution
and T* is an interval between inspections. By definition, a discrete
random variable £ is said to have a geometric distribution with
parameter p > 0, if Probl§ = n] = p(1 — p)™.

In our application, this parameter p depends on a damage size and
should be determined from the data like that represented in Fig. 4.

Description of Repairs

There may be several decision-making algorithms if damage is
detected. Examples include the following:

1) If delamination size less than 2 cm is detected in field inspection,
the repair is not necessary.

2) If delamination is more than 2 cm but less than 5, the repair may
be postponed until regular maintenance.

3) If delamination is more than 5 cm, it should be repaired at once.

At present, only the simplest algorithm is realized in a model.
When damage is detected there are the following two options: repair
now or postpone until scheduled maintenance. The method of repair
is directly determined by the type of inspection that resulted in its
detection. The degree to which the original strength is recovered is
determined by the method of repair corresponding to the inspection.
The degree of strength recovery is described as follows:

Assume that we made a number of composite components of
similar design. We then simulate damages of equal type, size, and
location in each of them, repair those damages with the chosen
method, test the components, and obtain an average failure load and
failure load variance. We will describe the strength after repair by
two parameters: the “strength recovery coefficient” (which is equal to
the ratio of the average failure load to that of a new structure); and the
coefficient of variation of the strength after repair.

It was found that this logic does not strongly influence the final
result. However it is possible to devise the logic that considerably
influences the probability of failure (POF).

Description of Strength/Stiffness Degradation due to Environmental
Exposure

The possibility of including the available probabilistic water
diffusion model [9] into this software has been discussed in [10]. The
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Fig. 5 Randomized aging knockdown factor.

model in [9] is based on Fick’s law of diffusion simulation. As the
integration is rather time consuming, it has been decided to use this as
a separate software branch. The integral effects of aging and water
absorption are simulated as quasi-random strength knockdown
factor versus time of operation, as shown in Fig. 5.

Rather than intervals of constant residual strength, this results in a
linearly changing residual strength in its time history. Fortunately it
can be shown that for most continuous load PDFs, the probability
that the load exceeds the linearly changing strength is equal to that for
a constant strength equal to the mean value between the ends of time
interval. We have used this in our POF calculations outlined below.

Computational Methods

As was mentioned earlier, the problem of determining the
reliability of damage-tolerant composite structures is addressed here
with computer simulation. Several sampling-based probabilistic
methods have been considered as candidates, such as the standard
Monte Carlo method (MC) and various methods based on fast
probability integration (FPI), as in NESSUS. The latter includes first
and second order reliability methods (FORM, SORM), various
importance sampling methods and advanced mean-based methods. It
was found that most popular FPI methods work well with smooth
performance g functions, but are inappropriate in tasks involving
discrete variables. As the model considered here uses some discrete
variables and variables with truncated PDF, main attention has been
paid to MC simulation. It is well known that although MC provides
accurate results, it is time consuming, especially if the g function is
evaluated through a finite-element model with many degrees of
freedom. Fortunately, the MC simulation realized for our model will
compute, on a typical office PC, a reasonable POF level from 1073 to
107 perlife in less than 10 s. This is generally enough for parametric
analyses.

Two closely related methods have been developed depending on
the realization of g function: the strength-load method (S-L); and the
POF. Both methods include simulated residual strength histories
(RSH), consisting of a sequence of intervals with constant or linearly
changing strength. In the S-L method a maximum random load and
random temperature are generated for each interval. The load is
compared with the residual strength computed depending on
temperature and aging. When L > S, the failure is recorded. The ratio
of the number of structural lives with failure to the total number of
simulated lives is the POF. In the POF method, the probability of
failure is calculated as in Eq. (1). Many such POFs are sampled, and
the average value and standard deviation are calculated. A number of
sampled histories is selected to satisfy the accuracy requirements.
This latter method reduces the size of the analysis region and
generally is significantly more efficient than S-L simulation. The
advantage of the S—L method is that a description of every failure is
recorded. If the model is complicated by many design load cases,
damage types, and inspection types, this feature may help to shed
light on the situation better than sensitivity analysis.

Residual Strength History Simulation

Each RSH is based on a number of intervals with damage of a
constant size. The starting time of each interval is arandom value and
the duration of each interval is arandom function of the probability of



LIN AND STYUART 1313

Number of Damages

Initial Strength S(,=0)
of Each Type Nd

for all Load Cases

Damage Initiation

Damage Size D,
Time ¢,

Generation

New
Sample

NO

i

Number of Inspections
to Detect Damage

YES

POF Evaluation

Temperature Damage Repair
Generation Sort Damages Time ¢,

Correction for Residual Strength Residual Strength
Temperature After Repair of Damaged item

Fig. 6 Simulation flowchart.

damage-detection and inspection interval. The history may be
randomly simulated using a finite set of random variables such as
damage occurrence rate and probability of damage detection.

So, we need to create a generator of random functions
characterized by a multivariate PDF, f(v). This generation scheme is
illustrated in Fig. 6.

The sequence for the generation of one residual strength history is
as follows:

1) For all considered design load cases, generate initial strength
values, S(t, = 0).

2) Generate the number of defects/damages for each considered
damage/defect type (if any).

3) If no manufacturing defects and operational damages occur
during this life, generate, for all considered design load cases,
random temperatures of the structure at each instant of maximum
load occurrence.

4) Correct the initial strength values S(7y = 0) for temperature and
aging, and evaluate the lifetime POF. Start a new generation cycle.

5) If the total number of defects and damages is more than zero,
generate sizes for all manufacturing defects of all types, then generate
residual strength values S(z;) for all design load cases. The
manufacturing defects are recorded and then treated as operational
damages occurring at 7, = 0.

6) Scatter operational damages over the life using a uniform
distribution generator. Generate time instants f;, for each and add to
the list of damages.

7) Generate values for damage size.

8) For each damage, randomly generate the time of detection and
time of repair using the probability of detection and the inspection
schedule. Generate a random number of inspections for different
types of damage detection using a geometric PDF, and then correlate
these to the inspection schedule. Find the minimum time of detection
from randomly simulated times for different types of inspection.
Determine repair time instants and the duration of damage existence.

9) Generate values of residual strength S(z;) with damage, and
account for aging by calculating the mean value between the ends of
the interval.

10) As a result of previous actions we have a set of intervals with
strength S(¢;). We may have intact structure intervals, overlapping
intervals of damaged states, and repaired state intervals. Here a
special procedure is applied to sort the intervals and eliminate
possible overlapping. This procedure results in a new sequence of
intervals, characterized by length ¢; and level of residual strength S;.
The sequence also includes intact structure intervals and repaired
structure intervals (if any).

11) Correct residual strength values, S;, for temperature.

12) Evaluate P, using Egs. (1) and (2). Start a new generation
cycle.

Demonstration Cases
Example Problem 1

The input data we use for this problem are typical of those for
current damage-tolerant composite aircraft parts. The structure used

complies with the requirements of AC 20-107A. The main
assumptions are listed below:

1) We assume just one design load case. The load exceedance
curve per life is expressed as

H,(x) = Hyexp (%x)

where Hy = 4.2683 x 10° and b = 0.112742. These parameters are
based on observations published by Taylor [11]. The frequency of 1 g
level crossings is 60 times per flight hour, and the frequency of limit
2.5 g level crossings is one per life (10,000 flights).

2) We assume only one type of damage. It is known that the size of
dust and sand particles, hailstones, and raindrops in the atmosphere
generally follows an exponential distribution, and so we assume an
exponential distribution of initial impact damage size. The damage
exceedance curve will have the simple shape described by the
following equation:

H,(D) = Eje P/® 3)

If we take two points on the damage exceedance curve, P,(D,) and
P,(D,), corresponding to damages that are in the region of 100%
detected, and assume that exceedances of the initial and detected
damages are equal, we can get the following expressions:

e—(D.—Dz)/B:ﬂ. B = D, =D,
Py’ ln (P, /Py)
Substituting the data obtained by Lin [5], we can obtain B =
1.6-1.8 in. In this example B = 1.5 in. and E; = 1 (one damage
event per life on average) are used.

3) We assume here just one type of inspection. The probability of
damage detection is described by the Weibull function [4]:

D 03
Ppr(D)=1- exp(——) ; a=14, B =1.64in.

p

4) The initial average value of strength is equal to
2.5x1.5x1.415 =5.3. Here 2.5 is the limit load factor, and 1.5
is a factor of safety. The last factor is an additional margin of safety
used for composite structures in a considered design load case. The
strength scatter is described by a Gauss PDF with the coefficient of
variation, Cy, = 5%, that is the same for both the initial strength and
the strength of the damaged structure. The reduction of residual
strength in relation to the damage size D is described by the following
function:

Y(D)=A+(1—A)exp(—g); A =0.55; G=20
“)

[where A is the residual strength asymptote, and G is the residual
strength slope]. All requirements of AC 20-107A are satisfied.
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5) The strength after repair is described by a Gauss PDF with the
average equal to 100% of initial strength and the coefficient of
variation, Cy = 5%.

6) The strength is considered to be independent of temperature.

Validation of Example Problem 1

To validate the method, we compared the exact solution with the
NESSUS solution for a simplified task. The results are shown in
Fig. 7.

We compared the simulation results with the following numerical
integration:

POF = L ™ om0 () dx 5)

where f; .. is @ PDF of maximum load per service life and F'g is a
CDF of structural strength. Here we assumed that there are no
damages or any other strength degradations. Various shapes and
parameters of those functions were tested and good agreement with
both the L-S and the POF methods was obtained.

The NESSUS model we obtained has the following features:

1) Exactly one damage per life, occurring in the middle of life;

2) Random loads for undamaged, damaged, and repaired state are
sampled from a Gumbel distribution;

3) Random initial strength is sampled from a normal distribution;

4) Random damage size D is sampled from an exponential
distribution;

5) Random inspection interval is sampled from a normal
distribution with Cy = 10%

Figure 8 shows a good agreement between the two considered
methods for the probability of failure using the above-mentioned
input data.

Parametric Study of Example Problem 1

In general, the POF and the corresponding inspection interval
depend on all input parameters. The most important have been
selected for this particular case. In all cases the inspection interval has
been determined as one corresponding to a probability of failure of
about 10~ per life.

Effect of Various Extensions of the Load Exceedance Curve

The PDF for maximum load is determined by an exceedance curve
of external loads per flight hour. The most reliable method for
deriving the load exceedance curve is to measure actual loads in
flight. The exceedance curve is usually known for the range between
the loads experienced in level flight to those at the limit load factors.
For the purpose of reliability assessment, the reasonable
extrapolation of this curve to the region between the limit load and
the ultimate load is needed. Figure 9 shows three possible extensions
of the load exceedance curve and Fig. 10 shows the effect of those
extensions. Extension 1 is suitable if the load source is atmospheric
turbulence; extension 3 is more suitable for maneuver load when it is
essentially restricted, for example, aileron deflection; extension 2
may be good for a combination of 1 and 3.

Effect of Damage Exceedance Curve Variations

The damage exceedance curve in this example is described by the
exponential function (3). The effect of the damage exceedance
intercept E, is shown in Fig. 11. The effect of damage exceedance
slope is shown in Fig. 12.

Effect of Average Detected Damage

In this example, the probability of damage detection is described
by the Weibull function. The influence of the Weibull scale
parameter is shown in Fig. 13.

Effect of Residual Strength vs Damage Size Variations

To describe residual strength vs damage size, we use Eq. (4). The
effect of the residual strength asymptote A is shown in Fig. 14.
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The effect of the residual strength slope G is shown in Fig. 15.

Effect of Strength Recovery After Repair

Strength recovery characterizes the quality of repair, and the
quality of repair depends only on the method of repair. But the
probability of failure depends, generally, on the percentage of
strength recovery. The higher this percentage, the lower the POF
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should be. Strength recovery after repair is shown graphically in
Fig. 16.

We determine the inspection interval assuming a constant level of
POF = 10~* per life, or 10~ per flight. If we have a perfect repair
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method (strength recovery = 100%), we obtain a POF = 10~ per
life, with an inspection interval equal to 130 flights. If our repair
method restores only 80% of the initial strength, we have to inspect
the structure more frequently to obtain the same POF = 10~ per life.
But if our repair restores only 65% of the initial strength, we cannot
reach POF = 10~ per life, even if we inspect after each flight.

Assume that we repair some damage and then test the structure,
obtaining a failure load of only 90% of its initial strength. We might
conclude that our repair method was inferior, as it increases the
probability of failure. But our calculations of POF show that this is
not the case. Rather, our calculations show that this structure is
insensitive to the quality of repair. In fact, the quality of repair
influences the POF and inspection interval only when the strength
recovery is less than 80%.

We conclude that the “inferior” repair method is adequate. This is
not trivial and is really a quite important conclusion. It means that the
quality of repair may not be as important as we suppose. Obviously
this is not a general rule and depends mostly on the behavior of the
residual strength vs damage size but, at least in some cases, resources
need not necessarily be expended on the invention and application of
“superior” repair methods.

Example Problem 2: Composite Fin

The input data for this problem were taken from FAA reports
[6,12,13]. This example works quite well for comparing the S-L
method with the POF method.

The main features of the problem are

1) The damage rate is quite low (0.231 per life).

2) The load cases include one subsonic and one supersonic case
with elevated temperatures.

3) Two types of damage are considered: delamination and hole or
crack.

4) Two types of inspection are considered: pre/post flight (type 1)
and a special (type 2) inspection method applied during maintenance.
The detection probabilities are shown in Fig. 17.

The analysis shows that most trends are similar to those for the
previous example. It is worth mentioning that the POF for the second
type of inspection is almost independent of the inspection interval
because the majority of damages are detected with the type 1
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inspection. Some specific results of parametric analysis are shown in
Figs. 18-20. The POF we obtained is rather high for this composite
fin. We can expect about 1% of fin composite panels to fail within
their usage life. The designer agreed to pay this tribute to mechanical
damages, however, because it was supposed that the failure would
not lead to a catastrophic structural failure. The fin has two metal
spars that carry an essential part of external load. This aircraft has two

main fins and two additional dorsal fins that guarantee the completion
of a successful flight even if one composite panel should fail.

Conclusions

In this paper we proposed a method for quantifying the damage
tolerance and reliability of aircraft composite structures in the
presence of multiple uncertainties. The method’s main purpose is to
discover the optimum inspection schedule while maintaining a high
standard of structural reliability. The effectiveness of the method is
illustrated for two typical aircraft composite structure models.

In summary, we can make the following conclusions:

1) Probabilistic methods may be used to quantity the reliability of
damage-tolerant composite aircraft structures, and to establish
optimum inspection intervals, enabling aircraft manufacturers,
operators, and flight certification authorities to establish maintenance
and service guidelines that reduce life-cycle cost.

2) The inspection interval that ensures a reasonably high reliability
depends primarily on statistical characteristics of external loads,
damage rate, and the residual strength of the damaged structure.

3) The behavior of the load exceedance curve near the limit and
higher, or the scatter of maximum load per life, have large influences
on reliability and inspection intervals and should be a subject of
special attention when applying the probabilistic methods.

4) Because of the lack of statistical data, the most uncertain
variables in any probabilistic damage-tolerance design method are
damage size and frequency. Unfortunately, available in-service
data may not contain complete descriptions of damage size and
frequency, their structural locations, or the inspection method
used.

5) The extent of strength recovery after repair does not, in a broad
range of values, significantly influence the reliability and inspection
interval.
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